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We consider exponential weights of the form w:=e~¢ on [ —1, 1] where Q(x)
is even and grows faster than (1 —x?) % near + 1, some 6 > 0. For example, we can
take

O(x) :=exp,((1 —x*) ™), k>0,0>0,

where exp, denotes the kth iterated exponential and expy(x)=x. We prove
converse theorems of polynomial approximation in weighted L, spaces with norm
[ fwll i 1 for all 0 <p < oo, to match the forward theorems proved in part I of
this pe{per. © 1997 Academic Press

1. STATEMENT OF RESULTS

There is a well developed theory of weighted polynomial approximation
for weights w: (—1, 1) —» (0, o) that behave like Jacobi weights near +1
[9]. However, for weights that decay rapidly near +1, this theory does
not apply. In this paper, we prove converse theorems of polynomial
approximation for even weights

wi=e 2 (1.1)
where Q:(—1,1) > R is even and grows at least as fast as (1 —x?) 9,
0>0, near +1. In part I of this paper [16], we proved Jackson theorems
for these weights; that is, we estimated

ELS v pi= O (f =Py w13, (1.2)

0 <p < oo, where 2, denote the polynomials of degree at most n.
Our methods are similar to those in [ 8], where Jackson theorems were
proved for Freud weights, and to the follow up papers [2, 3] where Erdos
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weights were treated. To state our results, we need to define our class
of weights, as well as various quantities. First, we say that a function
f:(a, b) - (0, w0) is quasi-increasing if 3C > 0 such that

a<x<y<b=f(x)<Cf(p).

DerFINITION 1.1. Let w:=e~ 9, where
(a) @:(—1,1)—> R is even, continuous, has limit co at 1, and Q' is
positive in (0, 1).
(b) xQ'(x) is strictly increasing in (0, 1) with right limit 0 at 0.
(c) The function

Q'(x)
T(x):= 1.3
(=50 (13)
is quasi-increasing in (C, 1) for some 0 < C < 1.
(d)y 3C,, C,, C3>0 such that
2'(y) 2(»)\°
Q’(x)<C1 <Q(x)> , y=zxz=Cs. (1.4)

(e) For some >0, 0<C<1, (I —x%)"*°Q'(x) is increasing in
(C, 1). Then we write w=e 2€é.

The archetypal example of we & is
w(x) :=w, (x) :=exp(—exp,([1 —x7] ")), k=0, a>0, (L5)

where exp, =exp(exp(---)) denotes the kth iterated exponential and
expo(x)=x [16].

We need the condition that xQ'(x) be strictly increasing to guarantee the
existence of the Mhaskar—Rahmanov—Saff number a,, the positive root of
the equation

u>0. (1.6)

2! , dt
MZ;JO ath (aut) \/ﬁa

For those to whom «, is new, its significance lies partly in the identity
[19-21]

HPW”L%[—I,I]:HPWHL,L[fun,anjs Pez, (1.7)

and the fact that «, is the “smallest” such number.



50 D. S. LUBINSKY

Our modulus of continuity involves two parts, a “main part” and a
“tail.” The main part involves rth symmetric differences over the interval
[ —ai/ 2> @1/2:], and the tail involves an error of weighted polynomial
approximation over the remainder of (—1, 1). For 2> 0, an interval J, and
r>=1, we define the rth symmetric difference

AT(fox, ) Z <> f<x+r2h—ih>, (1.8)

provided all arguments of f lie in J, and 0 otherwise. Sometimes, we just
write A4}, f(x) if it is clear which interval J we are using. Sometimes the
increment / will depend on x and the function

D,(x) = /‘1—L|+T( D7V xe(—1,1). (1.9)
1/t

This is the case in our modulus of continuity

a)r,p(f; w, t) = Sup HM;AZ(]),(X) (fa X, (_ 15 1))‘|Lp(\x|<a1 (2,))

O0<h<t

+ inf H(f_P)W”Lﬂ(a“4/)<|x\<l) (1.10)

Pe?._,

and its averaged cousin

1/p

B Fo 05| £ [0 S5 (LD

+ inf ([(f=P) WL < <1)- (L11)

Pe?,

(If p=o0, we set @, ,:=w, ,.) See [16] for further discussion of the
modulus. Here we simply note that the function @,(x) describes the
improvement in the degree of approximation near +a,, in much the same
way that /1 — x? does for Jacobi weights on [ —1, 1]. The main result of
part I of this paper [16] is

THEOREM 12. Let w:=e 2eé8. Let r=1 and 0<p<oo. Then for
f:(—=1,1) > R for which fwe L,(—1, 1) (and for p= oo, we require f to be
continuous and fw to vanish at +1), we have for n= C,

C
En[f]w,p<clcar,p <f’ w, C2><Clwr,p<fa w, 2>3 (112)
n n
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where C;, j=1,2,3, do not depend on f or n. Moreover,

E[f1.,<C, inf @, <f, w, C, Z) (1.13)

pel3/4,1]

(The inequality (1.13) was stated as Theorem 6.3 in [16].)

In establishing converse theorems of polynomial approximation, the
K-functional plays a crucial role [9]. In our context, a suitable K-func-
tional is

Kr,p(f) w, t") 3=h;f { I(f—g) WHL/,[fl, ntt Hg(")w(p’t' HL/,[fl, 1]}: (1.14)

where the inf is taken over all g whose (r—1)st derivative is locally
absolutely continuous. The presence of the function @, reflects “endpoint
influences.” Unfortunately, the K-functional is useful only for p>1 as it
often vanishes identically for p <1 [6]. So several authors have used the
realisation functional, which works for all 0 <p < oo, though it is not as
elegant as the K-functional [ 3, 6, 8, 12]. In our context, a suitable realisa-
tion functional is

K. (f,w,t):= inf —P)Ywl, 1+ POWD| )
v oS ) deg(PKl/[{H(f )Wle -1 [ A L)

(1.15)

Our first result concerns the equivalence between the realisation
functional and the modulus of continuity:

THEOREM 1.3. Let w:=e 2eé. Let r=1, M>0 and 0<p< .
Assume, moreover, that there is a Markov—Bernstein inequality of the form

HP:.W(pl/n HLP[fl,l] <Cn HPnM}HL[,[—l,lja P,e?, (1.16)

where C+# C(n, P,). Then there exists ty>0 and C;>0, j=1,2,3, inde-
pendent of f, t such that for te (0, t,),

Cio, (fiw, 1) SI?,’,,(f, w, ") < Gy, (fiw, t) (1.17)
and

Cio, (fiw, ) <K, (fiw, 1)< Cod, (f,w,1). (1.18)
Moreover,

, (fyw, Mt) < Cyo, ,(f, w, 1). (1.19)
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For p= oo, the Markov—Bernstein inequality (1.16) was established in
[ 18] under additional conditions on Q, namely, conditions on Q”, which
are certainly satisfied for w, , of (1.5). The methods of [15,17] and the
Christoffel function estimates of [14] enable one to extend (1.16) to all
0 <p< oo under the conditions of [ 18]. Moreover, we are certain that
(1.16) is true under scarcely more than we need for we &.

Note too that for p > 1, the methods of [9] should enable one to avoid
assuming the Markov—Bernstein inequality for Theorem 1.3. However, one
needs to assume this inequality for the corollaries below, so we do not
devote any attention to this point.

The inequality (1.19) allows us to simplify the Jackson theorem:

COROLLARY 1.4. Under the hypotheses of Theorem 1.3, for n= C,

1 1
En[f]w,p < Cl a_)r,p <f; w, > < Clwr,p <f; w, >3 (120)
n n

where C,, C, do not depend on f or n.
From Theorem 1.3 we can also deduce converse theorems of approxima-

tion. For the statement, we need {x), the greatest integer <x.

COROLLARY 1.5. Assume the hypotheses of Theorem 13. Let ¢:=
min{1, p}. There exists t, depending only on w, r, p such that for t€ (0, t,),
and [ :={log,(1/t)>, we have

!

@, (fiw, )I<SCT Y (1= j+ 1) 2ME, [ £ (1.21)

w,p>
j=—1

where C# C(f, w, t) and we set E,-1 :=E,.
One can deduce from (1.20) and (1.21) that for O <a <r,

o, (fiw, )=0(")<=E[f], ,=0n"). (1.22)

Finally, we note that for p > 1, the modulus may be estimated in terms of
/), and the K-functional and realisation functional are equivalent:

COROLLARY 1.6. Let 1 <p<oo. Let weé&.

(a) Iff"welL,[—1,1], we have
@, (oW, ) SCit" | fOWD L 1y (1.23)

Jor te(0, C,). Here C;#C,(f, 1), j=1,2.
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(b) If also the Markov—Bernstein inequality (1.16) holds, then
1<K, (fiw ")/K, (f,w, 1)< Cs, (1.24)

Jor te(0, Cy). Here C;#C,(f, 1), j=3,4.

The paper is organised as follows: In Section 2, we present some techni-
cal details related to Q, a,, and so on. In Section 3, we present a crucial
inequality that is proved using ideas of Z. Ditzian, following his proof
in [8]. In Section 4, we prove Theorem 1.3. In Section 5, we prove
Corollaries 1.4 to 1.6.

We close this section with more notation. Throughout, C, C,, C,, ...
denote positive constants independent of n, x, and P € #,. The same symbol
does not necessarily denote the same constant in different occurrences. We
write C# C(L) to indicate that C is independent of L. Moreover, when
dealing with, for example, x, ye(C, 1), it is taken as understood that
C < 1. The notation ¢, ~d, means that C,<c,/d,< C, for the relevant
range of n. Similar notation is used for sequences of functions. (x> denotes
the greatest integer <x. In the sequel, we assume that w=e¢ 2eé&.

2. TECHNICAL LEMMAS

We begin by recalling some technical results from the first part of this
paper [ 16]. Throughout we assume that w € §. Recall that @, is defined by
(1.9).

Lemma 2.1. (a) For uz=C,
0'(a,)~uT(a,)"”. (2.1)

Given fixed >0, we have for large u

T(ag,) ~ T(a,). (2.2)
Given fixed o> 1,

a 1

Lou 2.

a, Ty 23)

For some 6 >0, C3>0,

T(a,) < Cyu? =9, (2.4)
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(b) There exists Cy, such that for 0 <s<C,, and s/2 <t <s,
D(x)~P(x), xe[—-11] (2.5)

Moreover, for 0 <s<t<C,

D
sup () <C, |log (2 +l>. (2.6)
xe[—1,1] D (x) s

(c) Let L>0. For te(0, ), |x|, |y| <a,, such that

|x — y| < Ltd (x), (2.7)
we have
w(x) ~w(p); D(x)~D(y) (2.8)

Proof. (a) This is part of Lemma 2.2 in [16].
(b) This is Lemmas 3.1(b) and 7.1(b) in [16].
(c) This is Lemma 3.2(b) in [16], with a trivial modification to the
proof there. |

Next, we present a restricted range inequality involving a suitable
modification of @, ,:

LemmA 2.2, Let 0<p< oo, s>1. For n>=1, define

x 2\ 2
V.(x):= <1 — [} > + T(a,) > (2.9)
a}’l
Then for some n=1, 0<I<n and PeZ,,
HPWIPTHLP(*L H<C ”P}VTZ4‘|LP(711:(,+M,a:'1+n))' (2.10)
Moreover,
1z - —1z /4
HP‘/VTH/ H L/’(l = |x| Zul’l) < Cl € CZ"T(“") HPWW"/ H Lp( (I +n)> as(1+n)) ' (21 1)

Here C;# Cy(n, P,, 1), j=1,2. The same result holds for a fixed | (with
constants depending on 1) if we replace ¥ )/* by ®,,,.

Remark. Note that (2.4) shows that for some C;>0, and large
enough n,

nT(a,)"?>n%. (2.12)
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Proof. For [=0, this is Lemma 2.3 in [ 16]. Next note that
T(arz)72<W)7(x)<C in [_191]

Write /=4j+k, 0<k <3. Then as P¥/ is a polynomial of degree at most
n+1<2n, the case /=0 of (2.11) gives

J i gk
HPM}SUnMHLp(led}a |Pw¥ Sl/n/4HL[,(l>\x\>u

Si+m) | s(l+m))

<C, |Pw¥) ”Lp(l >|xl=ag, )

—-C =12 j
< CynT(a,) J
< Cle ”PwylnHLp(*”s(Hn)*":(HnJ)'

Our lower bound for ¥, allows us to continue this as

k/2  —CynT(a,) 2 i+ k/4
<CyT(a,)? e T | Pwp e 8

and since (2.12) holds, we deduce (2.11) and hence (2.10). Since ¥ /*~ @, ,
uniformly in [ —1, 1] and in #n, we also obtain (2.10), (2.11) for a fixed /,
with ¥ )/* replaced by @,,,. |

We shall need an extension of the Markov—Bernstein inequality (1.16):

LEMMA 2.3. Let 0<p< oo and ¥, be defined by (2.9) for n= 1. Then for
nz1,0</<n, P,e?,

1P Pw TRy < Ciln+1T(a,) Py IPYWE 10y (213)
S Gn(l+ 1) IPPwW g1y (2.14)

where C;# Ci(n, 1, P,), j=1,2. The same result holds for a fixed | (with
constants depending on l) if we replace ¥')* by @,,,.

Proof. 1t suffices to prove the result for large n. We first construct
suitable polynomial approximations of ¥!“ To do this, we use the
Christoffel functions 4,,(u, x) associated with the ultraspherical weight

u(x) 1= (1—x2)—3%4 xe(—1,1).

It is known [24, p. 36] that 4,,(u, x) ' is a polynomial of degree 2m —2
such that uniformly in m and xe(—1, 1),

Att, X) P ~m[1 —x2+m—2]1 (2.15)
and given 4 >0, for |x| <1 —Am 2,

| At )/ 2ty X)| < CL1 = X2 4+m 2] 1. (2.16)
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We choose m :=m(n) to be the greatest integer < 7(a,)"? and set

o[ ()]

Then R, has degree o(n) by (2.4). Moreover, (2.15) and (2.16) give

Rn(x)~¢l/n(x)~ Wn(x)1/47 xe[_a3n7a3n] (217)

and
IR, (x)/R(x)| SC¥,(x)""%  xe[—as,, as,]. (2.18)

Next, write /=4j+k, 0<k<3. Let Q,:=P". Let ] <s<3. From Lemma
2.2,

!
[P DD, <G QA

T4 14y Ds(i414m)]
<G 10 IR WP,

[— 3 a?;x]

<G PIRY W

a}fz]

. i 1/4
+7 10 L RWE Ly

IO IR R W )

= Cy(T, + T, + T). (2.19)

Here by (1.16), applied to Q, ¥/ R%, which has degree at most n+/+
o(n) <3n, and as

Yj:z/4~¢1/(3n) in[—1,1]
we have

T, <Cyn | Q, WﬁRﬁWHLﬂ[q, 17

< Csn [|Q PR, Wl L[ —ay,.

”3;’1:I
< Cgn | PPw HL[,[ —ay,. ay,]
by first (2.10) and then (2.17). Next,
, x\| x| 4
|S”,,(x)|=4‘l—<a> 72<f2 Y’n(x)l/l
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Using (2.17), we see that

I /4 —1/4 1/2 1 /4
T2< C7l HP(n)WTn/ / HLp[fah,aM] < CSIT(an) / HPL)WWn/ HLP[ —as,, az, ]

as ¥, "4(x)< T(a,)"?. Similarly, using (2.18) and then (2.17),

i pk gy —1/2 4
T5<Co |0\ PR, P/ HLp[fal\_(

n /+n)s”x(l+n)]

<Cyo [P w11,

p[ — 3y u3ll]

as before. So 75 admits the same estimate as 7,. Substituting into (2.19)
gives (2.13) and then (2.14) follows as T(a,)'? = O(n). |

Finally, we present an estimate of differences:

LEMMA 24, Let 0<o<l1; L,M>0; 0<p< 0.

(a) Let se(0,1] and [a, b] be contained in one of the ranges

s 2
x| <ay, <1 - {25%} > (2.20)
or
s 2

1> x| >a1/,<1 1{25&1/1} > (2.21)

Then
[ et sl de<21-0) [ 1) d (222)

where
{‘f};:{mf} (x+s®,(x):xelab]). (2.23)

b sup

(b) Letr=1,1e(0,1/M), he(0, Mt), and [a, b] be contained in one
of the ranges (2.20), (2.21) with s= Mrt. Define a and b by (2.23) with
s = Mrt. Assume, moreover, that

[a,b]=[ —Arns aL/t]- (2.24)
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Then

[w(x) A;@,(x)(gs x, (=1, 1))HLF[(1, b]

<C inf HW(g_P)HLp[a,B] <C HWgHLp[J, b1 (2.25)

Pe,_,
Here C# C(a, b, t, h, g).

Proof. (a) Define 6= +1 and u(x) :=x+ as®,(x). We shall assume
that [a, b] is contained in the range (2.20) and also a > 0. The case where
a <0 is similar, as is the case when [«, b] is contained in the range (2.21).
Then for xe[a, b],

1
W(x)=1 +‘”<—>> 1—6
2/ 1—(x/ay,) ay

by (2.20). Hence u is increasing in [a, b], and writing v :=u(x),

b , . u(b)
5|, D e dv=(1=0)"t [ f(w)] do

So we have (2.22). The extra 2 in (2.22) takes care of having to split [«, b ]

into two intervals if ¢ <0 <b.

(b) We shall assume that p < oo. The proof is easier for p = co. Let
us assume that [a, b] is contained in the range (2.20) with s = Mrz. Now

#03) A5 (<10 = B () (=10 g (o (51 o).

Next, (2.8) shows that
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uniformly in 7 and for |x| <a,, and A< Mt. (It is only here that we need
(2.24).) Then using (a), we obtain

b ih
) 83 (=L D <€ sup [ lgnl? (325 @) s

o<i<r‘a
2C
<5 lewl (x)ax.
Note that for 0 <i<r, and & < Mt, our hypothesis (2.20) with s = Mrt gives

x| < : Mrt \? - . ih \?
Xisdy, 20a,, Sy 20a,,

so the range restrictions of (a) are satisfied. Finally note that for Pe 2 _ |,

AZ(D,(X)(Py X, (_ 13 1)) =0.
Hence
[w(x) A;dﬁ,(x)(gﬂ x, (=1, 1))”Lp[u,h]
= [w(x) AZ:D,(X)(g_Pa x, (=1, 1))HLp[u,b] <C HW(g_P)HLp[a,/Sy

Now take inf’s over P. ||

3. A CRUCIAL INEQUALITY

In this section, we establish a crucial inequality using ideas of Z. Ditzian

[8].

THEOREM 3.1. Let weé. Let r=1, L>0, O<p<oo, P,e?,. If
0<p<]1, assume also the Markov—Bernstein inequality (1.16). Define
PeZ. _, by

P(x) :=Pn(x)—fx ff P\ ug) dug duy -+~ du, . (3.1)

Arn Arn Arn
Then for some C;# C;(n, P), j=1,2,
[(P,—P) WHL,,[aLn, 11 Cl(nT(an)l/z)ir HPy)WHLp[fl, 1] (3.2)
<Cn’ ‘|P£,")‘/V¢q/nHLp[—1,1]~ (3.3)

Our method of proof follows that of [ 8, 3]. The chief difficulty lies in the
case p < 1. We first deal with p > 1, following the approach of [8].
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LEMMA 3.2. Assume the hypotheses of Theorem 3.1 with p>=1. Then
VgeLp[aLna 1]9

Ww(x) jx (u) du

ALn

<Ci(nT(a,)") " gwllL a,,. 11 (34)

Lp[aLn’ l]
Here C, # Cy(n, g).

Proof. This is similar to Lemma 11.4.1 in [9, p. 187], to Lemma 6.2 in
[8], and to Lemma 4.2 in [3], but we provide the details. We begin by
noting that for x >¢>0,

W) [ )2 Q' () du=2 <1 —~ <W(x)>l/2> <2. (3.5)

t
Next for n=n, and u>a,,,
Q'(u)=C,Q'(ar,) = ConTla,)"”. (3.6)

(See (2.1).) Consequently for x >a,,,

<[CanT(a,) ] w(x)? [ [gw]

4rn

x (1) O'(u) w=Y*(u) du. (3.7)

r g(u) du

4rn

w(x)

We shall need a consequence of Jensen’s inequality for integrals, applied
with the power function ¢?, p>1: For non-negative measures u and
p-measurable functions f,

[ran) <(] |f|Pdu><fdﬂ>p'. (38)

Now we turn to the proof of (3.4):
p=oo: Here (3.7) implies that for x >a,,,

p

w(x) g(u) du

<[CynT(a,)'?]™! lewlr, ra,,. 11

Arn

x w(x)1? fx O'(u) w=V(u) du

drn

<2[ConTl(a,)?]~" |gwl L, [ag.11°

Here we have used (3.5). So we obtain (3.4).
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p < oo: Here applying (3.7),

w(x)J g(u) du

9Ln

Llag,. 1]

<tCntta)?) | |

Arn

[ e

L

1/p

x (1) O'(u) w1 (u) du} ’ dx}

<CCntla) 21| [ 20 w2 [ fgwls

4rn 4rn

x (1) O'(u) w=Y*(u) du dx} v

by (3.8) with du(u) :=w(x)"* Q'(u) w(u) ~"*du on [a,,,x] and as (3.5)
shows that | du <2. Now

jl w(x)"2 j low|? (1) O () w(u) "2 du dx

4Ln 4L

1

=[[ el | [ e Q') dx| w2

L u

<]t o0t

Arn “
=2C, Wl 0y, 1y

In the second last line, we used the quasi-monotonicity of Q'. So (3.4)
follows. |

Proof of (3.3) for p=1. This follows by induction on n from Lemma
3.2: Firstly for r=1, Lemma 3.2 applied to g = P, gives

< C(nT(a,)'") " IPwl

/z[uLn’ 1 ]
Lylag,. 1]

w(x) [ Pug) duag

and then the identity (3.1) gives (3.2). As @, ,,(x)>T(a,) ' (3.3) also
follows. Next for r =2, Lemma 3.2 applied to

gluy) 3:Iul P(ug) dug

Arn
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gives

wi) [ " Py dtag iy

Arn "9

Llag,. 1]

w(x) jx g(uy) du,

Arn

Lp[aLn’ 1]

< Cy(nT(a,)"?) ! HgWHLp[aLn, 1]

= Co(nTta,)") " | w(x) [ Pllug) ditg

ary

Lp[aL”, 1]

< C3(}’ZT((1”)1/2)_2 HWPZ HLp[”Lm 1]>»

by Lemma 3.2 again. Then (3.1) gives the result. Clearly after applying
Lemma 3.2 r times to the right-hand side of (3.1), we get the result. |

We break down the proof of Theorem 3.1 for p <1 into a number of
lemmas.

LemMA 33. LetO<p<l,n=zr=1, L>0. Let P,e?,, Se€Z?._, and let

g(x):=(P,—S)(x). (3.9)
Let
12 p/(1—p)
I,,(x):=H|g’w|1”(u)<w(x)> . x=a,,. (3.10)
Wy(u) L, [ag,,x]
Then

1 r—1
[ 1 de<c| X i) 2 0 0r e, - )01

pLap,: 1]
(nT(a,)") "7 WP 1]} . 1)

Here C is independent of n, P, S.

Proof. Note first that

W(x)>p/(2(l —pr))

1 = lgwi ) (50

L, lLay,.x]
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Let 7:=6(nT(a,)"*) !, where 6 >0 is so small that for n>1, Re Z,,
T(an)71/2 [R'w| L1111 <R W(pl/n HL [—1,1] \ HRWHL 117 (3.12)

Given x > a,,, we define
ko:=ko(x):=max{k:x—(k+1)t>a,,}.

We see that

I(x)< max
0 <k <ky(x)

w(x) p/(2(1 —p))
)

W(x)>p/<2(1 -

w(u)

gl

L, [x—(k+1)t,x—kt]

[ 1gwie @) (

L, [a,,x—(ky+1)7]

Now for ue[x—(k+1) 7, x —kt], (recall that x—(k+1)t>a,,)

MX)  ot—kn— ot

w(u)
and by (3.6),
O(x)— O(x —kt) = CynT(a,)"? kt = C,5k. (3.13)

Thus

=~

p/(2(1—p))
<w(x)> < ¢~ ue[x—(k+1)t,x—kt],

where g €(0, 1) is independent of x, u, k. Then

k ko(x)
I'l(x)<0<r/§1§/§)(v) Hg WHL JIx—(k+1)7, x—kt] —i_q(O)~ Hg WHL wlaps x—(kg+1)7]
ko(x)

k
< Z q HgW”L Ix— G+ Drx—ke1 T4 Lo | g'wl 8 g, x—(kg+1) 7]
k=0

Let us set 7,(x):=0=:(g'w)(x), x>1, so that the previous inequality
remains valid for x> 1. This device simplifies the subsequent argument.
Then
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o ap,+(m+1)7

1
f I(x)dx=Y f I(x) dx
ar, m=0 “ap,+mz
O rap,+(m+l)rT [ko(x)

k
< z z q Hg,WHix[xf(kJrl)r,xfkr]

m=0 “dr, +mt k=0

k
+ g |glw|{x[aLn,x—(k0+])r]:| dx.

We observe that

ar,+(m—k)t

Hg’wuiw[xf(kJrl)r,xfkr] dx=f ”g,WH{ﬁ[x,err] dx.
a,+mt arp,+(m—k—1)t ‘

ar,+(m+1)7

Recall that if xe[a,,+mt,a,,+(m+1)1], then m=ky,=m—1, so

jl I(x)dx

An

m—1 uLn+(m—/\’)T i
3 GNEWIE vy d
oLik=0 “ar,+(m—k—1)7 ;

+2 m—1 uL”JrTH ’ P d
q gWHLx[aL”,x] X

Arn

00 ar,+(s+1)z

< Z Hg,w“ix[x,erf] dx Z qk

s=0 "dtsT (m, k)
s=m—k—1

2 [ gl gy

0 ap,+(s+1)t a

ntT
< C3 |: Z |‘glw‘|£x[x,x+f] dx‘i‘f Hg,WHILL[aL”,x] dx .
s=0 "4 tsT ALn
(3.14)

Now for ue[x, x+ 7] (recall that p<1)

P

i g"(x)
=RV
<i |g(j)(x)|pr(jfl)p
j=1

=Y |[(P,—8)Y (x)|7tU=D7 4 ¥ |PD(x)|7 i D7,

j=1 j=r

g )’ = (u—x)/~"

1
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Since also w(u) < w(x) for ue[x, x+ 1], we obtain (recall our convention
g'(x)=0, x>1)

o0 ap,+(s+1)z

Y| 18WIE, sy ¥

s—=0 “dr, +st

r—1
<Y PP,

J=1

+7 (r=1)p Z J=npr Hp(/ W\ L Lag, 11
j=r
r—1
i1 .
< Z U=Dp H(Pn_S)(J)W”Ilip[abl,lj

Jj=1

. s (J—=rp
+ e HPE,r)WH L[—1.1] Z (”T />

g P) J—Dp o)
<X <W> 1P, =S) " W 14,13
o 5 c-vp
e ) IR S LU LA CAL)

Here we have used our choice t=d(nT(a,)"?)~". In much the same way,
we can use Taylor series to estimate the second term in the right-hand side
of (3.14). Together (3.14) and (3.15) then give the result. ||

LemMmA 34, LetO<p<l,nzr=1, L>0. Let P,e?,, Se? _, and let
(P,—S)ag,)=0. (3.16)
Then for some C independent of n, P,, S

WP, =S 1,0, 11 < C(nT(@,) )~ WP, = SV, 19

r—1
x Z (nT(an)l/z)f(/fl)(lfp) Hw(pn_S)(/) HlL;[ngl]

Jj=1

+(nT(a,) ) == WP oy | (317)
L1
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Proof. Let g be given by (3.9). Note that g(a,,) =0 by our hypothesis
(3.16). In particular

Then

4:=|w(P,—=S)| Llag,. 115 ”WgHLp[aLn, 11

= {fl JX (g'w)(u) w(x) du ’ dx}l/p

ar, Arn w 1/[)

1 i, w(x))l/2 L
<{[ 1wt (2 o

x 12 » 1/p
X {LM |g'w|? (u) <::E:3> du} dx} .

Now we apply Holder’s inequality with parameters r=1/(1 —p), a=1/p,
so that 1/o+1/r=1:

Ag{f

Arn

e ()

x{jl f |g’w|”(u)<W(X)>l/2dudx}=:T1><T2. (3.18)

ay, a, w(u)

p/(1—p) (1—p)p
dx}

Lcc[”Ln’ x]

We see from (3.10), (3.11) of Lemma 3.3 that

Tl _ {fl In(x) dx}(l —p)/p

drn

r—1
<C [ Y. (nT(a,)"?) V= D=2 (P, = S) V| 1 f

Lylag,. 1]
Jj=1

+(nT(a,) )= DD WP - (3.19)
L1

Of course C, is not the same C as in (3.11), but is independent of n and
P,. Next, using (3.6),
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T2=J1 lg'w|? (u) jl <W(X)>l/2 dx du

o ()

Cy(nT(a,)"?) ! Jl lg'w|? (u) {W(u)l/2 Jl w(x)2 Q' (x) dx | du

ary u

=20, (nTla,)™) " [ gl () du

4rn

=2C,(nT(a,)"?) " |w(P, — S| Z,,[am 1

Combining this with (3.18) and (3.19), we obtain the result. ||

Proof of Theorem 3.1 for p<1. Let P,e %, and let the corresponding P
be given by (3.1). We begin by noting an extension of (3.17): For 0 </<r,

HW(PH - P)(I)H L

p[aL/z’ l]
<C(nT(a,)'?)~" |w(P,—P)"* V|2 JLap,. 1]

r—1

x| Y (nT(a,)?) "m0 w(P, = PYD|
j=1+1 "
+(nT(a,) )~V WP (3.20)

The case /=0 of (3.20) is just (3.17) with S= P. The case />0 follows by
applying Lemma 3.4 to the polynomial (P,—P)"”e 2, , and with r in
(3.17) replaced by r—L (Note that (P,—P)" (a,,)=0, 0<I<r, so the
hypothesis (3.16) is fulfilled). We use (3.20) and backward induction to
show that

WP, —=P) 1 pa, 1< CnT(a,) ) WPy 4ge (321)

k=r—1,r—2,..,0. Of course Theorem 3.1 is the case k=0 of (3.21).
k=r—1. Here (3.20) with /=r—1 gives
HW'(Pn_P)(ril)HLp[aL”, 1]
<C(nT(a,)"*)~ " |w(P,—P)"|% 7 ran 11 [wP || L7 Ny

= C(n1{(a, )1/2)_1 HWP ”L[—l 17-
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Assume (3.21) true for r —1,r—2, ..., k+1. We prove (3.21) for /=k by
substituting (3.21) for I=r—1,r—2, ., k+1 into (3.20) with /=k. We
obtain

k
WP, = P) o, 13

< C(”T(“n)l/z)_l [(nT(an)l/z)k-H_r HWPE,”HLP[7L 1]]p

r—1
% Z (nT(an)l/Z)*(f*kfl)(l711)+(_/'*r)(1*17) H‘VPE,V)H},;[ILI,I]
J=k+1

+(nT(a,)"?) == T WP

< Cl(nT(an)l/z)k_r HWP;”HLP[A, 17+

So we have (3.21) for k. |

4. PROOF OF THEOREM 1.3

In this section, we shall prove Theorem 1.3. We first prove two lemmas,
which together give most of the proof. Recall first that for >0,

Kr,p(f! w,t"):= inf {H(f_P) WHLF[71,1]+[V HPU)WQ’:HLP[A,]]};

deg(P) <1/t

wr,p(f; w, Z) = Ssup HM}A};dil(x)(f.’ X, ( - 1& 1))” L(Ix| <ayay)

0<h<t

+ inf [ =P) Wl as x5 a,,,

Pes,_,

and

1/p

) Lp
@, (fow, 1) = L jo W00 % (=L IS g oy U

+ inf H(f—P)W\|Lp(1>|x\>al‘4,))~

Pez,

Throughout this section, we set ¢:=min{l,p} and we assume the
hypotheses of Theorem 1.3 (unless otherwise specified). We begin by
estimating w, , above in terms of K

rnp*
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LemmA 4.1. Let L>0,0<p< oo, r=1. Then for te(0, C,) we have
@, ,(f; w, Lt) < C, K, (f, w, 1), (4.1)

where C;# C,(f, 1), j=1,2.

Proof. Fix t<1 and determine P, of degree at most n:={1/t> <1/t
such that

”(f_Pn) WHLP[fl, 11+ t HPL”W¢§ HLp[fl, 1] <2Kr,p(f5 w,t"). (4.2)
We shall show that for 0 <h < Lt,

1WA, o s X0 (=1L I 11 <y g < C1 K H(fs s 27) (4.3)

and

i (= P) Wl o1 = < G R (w00, (44)

e?_y
which by definition of w, , implies (4.1).
Proof of (4.3). Now

HWA;@L/(X)(f, x, (=1 1) %p(pc\ <ayja)
< Wy =P X (=L DI g
0 P s (— L DY oy
<G (f=P,) W”(Il‘p[—l, T ”WA;zdivL,(x)(Pn» x, (=1, 1))”1,,(|x\<al (210’

(4.5)

by Lemma 2.4(b). Note that given any 4 >0, (2.3), (2.2) and then (2.4)
show that for small enough ¢ and |x| <@, .,

| x| >1_al/(2u)> C

1— > =
Ay)Le Ay1/Lr) T(al/t)

> At?

so x lies in the range (2.20) with s = Lr - Lt and Lemma 2.4(b) is applicable.
We now proceed to the (fairly complicated) estimation of the second term
on the right-hand side of (4.5). Recall that 4, S=0 for Se % _,. In par-
ticular this applies to

r—1 P(l)

=0

(u—x)".
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Then using Taylor series and this remark, we see that

L, i P, g < ) )P, <x+<;—k> thL,(x)>

"((r2—k)hd (X)),
=,¢20<2><—1>22f‘” e, wo

Then we deduce that

HWA/@L(Y)(Pn»xs( ))HL[—] 1]

r r\? ([7/2] h)lq
<2 <k> Y IPIwRL Ny (4.7)

k=0 I=r

Now as n={1/t), we have by (2.5) that
D(x) ~ P (X) ~ P x) ~ P H(x),  xe(—11), (4.8)

where the constants in ~ are independent of x, ¢, and n=n(z) = {1/t).
Recall that ¥, was defined by (2.9). By repeated application of our
Markov—Bernstein inequality Lemma 2.3,

HPS’II)M}¢ILI ”Lp[fl, 1S C/1 HP;[)WSUZM HLp[fl, 1]
I—1
SCUIPYWE Al r 109 Co " [ (n+ jT(a,)' ).
j=r

Since Tl(a,)'?=o0(n), we see that given &¢>0, we have for n=nye),
r</<n,

H (n+jT(a,)"*) < Cyn'~"[e' 11 +1]

where C; and n, do not depend on /, n (nor on A, L above). It is also
important that C,, C, above are independent of ¢&. We deduce that for
n=ny(e), (or equivalently for small ¢), and 0 </ < Lt,

HM}Ah(b (v)(Pna X, (_la 1))”20[71, 1]

rq n 21hC, C (I—r)q
<2rc4 Hp(r)mjg/rMHL -1 <; /’l> Z ([V/ ] ll]q 2”) [8([71')(/1!:1_'_1
/ :

=r

>y (I—r)q 1
< Cs HPLV)Wq);HZP[fl,l] 1" Z <2LC1 C2> { v ')q+[111}

I=r

< Cgt™ I\PE’)W‘DZH%F[A, 1]
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as nt <1 and provided ¢ is chosen so small that [r/2] LC, C,e < 1. This is
possible as ¢ did not depend on L, n, C,, C, but can be made arbitrarily
small for n >n,. Then using (4.2) and (4.5), we obtain (4.3).

Proof of (4.4). Next, we recall Lemma 3.1 from [9], proved there for
weights on the whole real line, but valid without change for [ —1, 1]: For
¢>0,

Selg’,f;l I(f—S) WHLp(l > x| =¢)

<2¥4=3 inf —S)w + inf N R ——
[Sey IS =) wllp e 1y s IS =S wlle 1, —a]

r—

We shall apply this with {=a,,4,,, and use Theorem 3.1 to estimate
infSE/, I(f—S) WHL[C 17- The term on [ —1, —¢] is handled similarly.
For P determined by (4.2), choose Pe . _, by the identity (3.1) with L
replaced by 1/(4L). Then as a,;4;,) = a4z

inf
Se?._,

<If=Pywlt g

_ _ q
<|[(f="P,) WHL[_[a”W‘”, 1t I(P,—P) WHLF[%,M), 1]
<2, ,(f, v )]+ ConT(a,)' ) " [Pwe

(f— S)WHL[al 11

(by (4.2) and (3.2))
<[2K, ,(f,w, t")]7+ Cst™ | PV wd) |4 L1 S S CeK, (fw, 1)
Here we have used 1<nr<1, (4.8), and then (4.2). 1

The converse direction is more difficult. We first prove:

Lemma 4.2, There exist C,,

0<i<ey, and 0<s, t < C, with

j=1,2, and 0<ey<1 such that if

i<;<% (4.9)
we have
(Dr,p(fa w, S)<C266r,p(fs w, t) (410)

Here C;, j=1,2 and &, do not depend on f, s, t (but depend on 1).
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Proof. We do this for p < oo; p= oo is much easier. We split

B 2[’ s )
wr, p(f’ w, S)p < ? L) [ HMJA ;I¢S(X)(f’ X, ( - 17 1))“ ]l],p(\x| <(11/(3,))

+ ”WA;,(/;S(X)(fa x, (=1, 1))”2@ a0 < Ixl<a (23')] dh

+27 i (= PY Wy <iv1 <)

21

.l |.
N

+ T+ ;. (4.11)
First, as al/(4,v) = al/(4[) 5

T5<27 inf H(f—P)wH{(am<|x‘<l)<2pcaﬁp(f,1v,t). (4.12)
Pe?,_, prELAn

Next, by Lemma 2.4(b),

To<2 il (S =PYWIE 0 cpeny S27GL(fow 1), (413)

Pe?, |
In applying that lemma, we note that our range of integration is of the
form (2.20). Moreover, in working out @, we used the fact that @ (x) is a

decreasing function of x € [0, a,/,, ], SO

inf{x — Mrs®(x): a3, <X < a0}

:al/(3t)_MrS¢s(al/(3t))

= a5y~ MrCtd (ays,)
(by (2.6))

Zdy 3yt 0(1/T(al/t)) Z A4
for small ¢, see (2.3) and (2.4). Note that the bound on how small ¢ should
be in no way depends on s or A. It is more difficult to handle 7,. Let us
divide J :=[ —a,/3,), d1,3,] into O(1/s) intervals J; such that

|Jk| <dex(x)a XEJk

for all k. Here |J,| denotes the length of J,. Formally we may do this by
choosing a large positive integer n ~ 1/s and a partition

—al/3t=‘[0<‘[1<‘[2< <rn:a1/3,
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with

Th+1 Tn 1
j dﬁsl(x)dx/j & (x)dv=-, O<k<n
‘L'k ‘L'O n

and we set J, :=[1,, 7, ]- Note that then by (2.8),

with constants independent of x, y, s, k. Then

2P rs
z:—J\ ZJ |M/A2(I)S(x)(faxa(_17l))|Pdth

S Yo k Yk

Q

1 s
<SCYwi(r) [ [ Mg (f % (=1, D)7 dh dx
k Jks 0

du dx.

| s/ ) D ,(x)
_ P — A" =1, 1)”
L[ ST M (CLI G

Now from (2.6), for some C # C(s, t, 1),

s@ (x) s | < s>
su ————<C- [log|2+-)<1
xe(fll),])tcpr(x) 4 g t

if s/t <g,. Here ¢, # ¢y(s, t, A). Moreover, by (2.5), for 1 <s/t <g,,

D(x)
C3<m<C4, XE(—],l).
Then
L
F<CsYww) [ = [ g o f % (=1, D)I? du dx
I 7S Yo
1 rt
< Cor [ Wl 3 (=1, 1)1 v
0vJ

< C6a3r,p(f9 w, t)[}

In the last line we used (4.14). Together with (4.12) and (4.13), this gives
the result. ||

Lemma 4.3. Let 0<p< oo, r=1. There exist C,, C,, C3>0 independent
of fand t such that for 0 <t<C,,

Er,p(fa w, tr) < CZQ_)I‘,p(fa w, C3Z) (415)
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Proof. Let t>0 and n:={1/t). By Theorem 1.2, for n> C; we can
choose P, €%, such that

) _ p _
[(f—P,) WHL[,[fl, 1< C; inf Dy p <fa w, Cg n> < C7wr,p(f’ w, Cgt)

pel3/4,1]
(4.16)
for 1 < C, <}, since then we can choose
pi=pt)i=nt=_1/t) te[3, 1]
We shall show that
I PYWO| 117 < Cod, ,(f,w, Cyt). (4.17)
Once we have done this it follows that
I?r,p(fa w, ") < |[(f—P,) WHLp[fl, Thad HPE:)W(’D?HL[,[fl, 1]
< Cyo, (f,w, Cgt).
To prove (4.17), we set s := ¢, where J < § so that
1_4
i>,>2n’ 1<t (4.18)
25t

and o is also so small that we can apply Lemma 4.2 (with ¢ replaced by
Cgt) to deduce that

Car,p(fs w, S) < Cllair,p(fa w, CS t) (419)

Of course 6 #4(f, t) but C,; depends on 6. We proceed to prove (4.17).
Note first that applying (4.6) to the monomial x" (with Lt replaced by s)
gives

e T T

k=0

so we can rewrite (4.6) as

Azqﬁs(x)Pn(x) - (h¢‘(x))’ PL’.)(X)

I=r+1 I

Moreover, as s ~t~ 1/n, we have (see (2.5))

D(x)~D(x)~ D, (x)~ ¥ )Hx), xe(—1,1) (4.20)
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with the constants in ~ independent of n and ¢. Then

F:ZHW[AZQSY(X)PH(X)_( ( )) P(r)(x)]HL[fa]/(z\ 511(2”]
N & (D21 Ry
<X () = W ipvetis,

I=r+1
T & (Cpplr/2] h)"
\/Z < > ; 2 . 1 [P w1y
k=0 =r—+ °

. . roN X (CCran[r2] h)V—14
<Cyy IPZ)WW/“ZP[H]<C122/1> Y 2 it

I=r+1

e

by repeated applications of our Markov—Bernstein inequality (2.14). It is
important here that C,,, C,; are independent of ¢, n, h, P,, I. Now if
nh< A4, where 4 is a fixed positive small enough number, Lemma 2.2 and
(4.18) above allow us to continue this as

r<? h,q HP(r)wdS’HL Ly oy a1

It is crucial that 4 is independent of ¢, &, n, P,, . We deduce that for
0 <h<A4/n and hence for 0 </ < 4t, and hence for 0 </ < 4s,
HWA'h(P x‘)P (X)HZ L —a; (25)° “1/(2.\)]

rq ) pr
=h HWP ¢ HL[_“I/(Zx) /(2]

— W4} ) Pl(%) = (D ()" PO TN o
lhrq HWP(H@ ”L[ = Ch" ”WP(r o9 L—1.17

—aya) 41291 7

(In the last step, we again used 1/2s>2n and Lemma 2.2.) Raising to the
(p/q)th power, integrating for 4 from 0 to 4s, and using (4.20), we obtain

1
o I G PUOE o 3 Coas” [PTWD

Assuming, as we can, that 4 <1, we obtain

P HP(nr)wé? H ip[ —1,17
C16 K
< 10 PN a1 U

<ij Il o P = )5,

+ HWA;:Q\()C f( )”L oL =120 ”1/2)]} dh
< CIS{ H‘V(Pn_f)H Lp[fl, 1] +wr,p(fa w, s)p}

9 41/(2s)]
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(by (2.25))
< C19a_)r,p(f5 w, C8[)p
by (4.16) and (4.19). So we have (4.17). |

We can now turn to the

Proof of Theorem 1.3. From Lemmas 4.1 and 4.3, for any fixed L >0,
0<t<ty, we have

a_)r,p(fa w, Lt) < wr,p(fa w, Ll) < Cl [?r,p(fa w, lr)
CZCar,p(f; w, C3 l) < Czwr,p(fa w, C3Z) (421)

N

Here it is important that C; is independent of L, f, ¢. Fix M > 0 and choose
L=MC; and set s = C5t to deduce that

@, f. . Ms) < Ca0, ,(f, w,5).
So we have (1.19). Similarly (4.21) gives
@, Sy w, Ms) < Cr0, ,(f, w, 5).
Then (4.21) gives
@, )(fow, )~ @, ,(fow,5)~ K, ,(f,w,5")

with constants in ~ independent of £, 5. ||

5. PROOF OF COROLLARIES 14, 1.5, and 1.6

First, Corollary 1.4 follows from (1.19) of Theorem 1.3 and Theorem 1.2.
We turn to the

Proof of Corollary 1.5. Let t<C<3 and choose n:={1/t) and [:=
(log,(1/t)>, so that

and
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For j>1, let P} be a best polynomial approximation of degree <j to f, so
that

I(f— P )W”L[fl 1]—E Lf]1.. P
Moreover, we set P51 := P§. Then by (1.19) of Theorem 1.3,

o, (fiw, )< Cio, (fiw,n )< CK, (f,w,n"")?
<C; inf {|(f— PWHL[fl 1]

deg(P)<n
+n" HPU)Wd)q/nH% [—1, 1]}

—r (r)
<C4{H f—Pi WHL[—] jtn " ‘|P>2k/*rlw¢;*1”{i[_1,1]}
P

(by (2.5))
1—1

{Ezl l[f]w p-i—qu Z H{P;‘k-P;‘k—]}(r) W¢;*/”Zp[—l,l]}

k=0
(as P37=0)

1—1

{E2/ 1[f:|w p+["’ Z (log 2171{)”’/2 H{P;kk—P;kk—l}(r) ang*kuzp[—l,l]

(by (2.6))
1—1

{Ez’ L1 T + 1" Z (l_k)rq/z 2rka H{P;'_P;kal} W‘l%p[—l,l]}

k=0
(by (2.14): recall r is fixed)

I—1

ColExa[ 1Y ,+17 ) (I— k)2 2 E [ f14, ot

k=0
!
<Cot™ Y (I=k+ 1) 2"Ex[ 1% ,. |

k= —1
We turn to the
Proof of Corollary 1.6(a). We shall separately show that for 0 </h <1,

”WA;@(V)(fa x, (—1, 1))HL,)(\X\ <ayja) <Cr ”f(r)W¢:”Lp[71, 1] (5.1)
and

inf H(f P) W”L(1>|\|>a]/(4,)<Ctr Hf(’)W(p ”L[fl 17- (5.2)

PeZ,
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The corollary follows immediately from these two inequalities. We do these
for 1 <p < o0; the case p = oo is easier.

Proof of (5.1). First note that for u >0,

Aru(f’ X, (_13 1))

u/2 u/2 u/2
f f f SO+t +t,+ - +t,) dE dt, - dt,

—u/2 Y —u/2 —u/2

ru/2
<u“*f £ O(x +5)| ds. (5.3)
—ru/2

Now we claim that
D, (x+85)~D,(x);w(x+s5)~w(x) (5.4)
uniformly for

rt
| x| SYXAVENY |s] SE D (x).

This follows from Lemma 2.1(c) provided that for this range of x, s
|x+s| <ay,. (5.5)

Now if x>0,

rt X
|x+s|<x0:=x+[ 1—+T(a1/,)1/2]
2 a,

Here by (2.3), (2.4),

rt rt
<
21— (xfay,)  2/1—(ay0/a,)

So, by definition of x, and this last inequality,

<CiT(ay,)"?=o(1), -0+,

t
RN S <1 _X>_r Tla,,)~1"
iy SV ay,) 2ay,

>(1 —"a/”) (1—o(1))—o(T(ay,)~") = CTlay,)~' >0
1/t
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by (2.4), (2.3). So we have (5.5) for small enough ¢. Then from that and
then (5.3) and then (5.4),

[W(x) A}, ( S X, (=1, 1))

rhd (x)/2
< Con(x)(hd (x) ! | £ (x + )] ds
—rh®(x)/2
1hq3(\’ » d 6
< (s w®” £ (x+5) ds. 5.
. x)f,,m/' TFO] (x +9) (5.6)

Now for p>1, the maximal function operator

MLl =sup s [ gt +9)]ds

u>0

is bounded from L, to L,, so

HWA;@!(X)(fa x, (—1, 1))”Lp(|x\ <ay ) < Ceh” HM[ij;f(r)] HLP[—I, 1]

<C,h" HWdS:f(r)HLp[fl, 175

that is, we have (5.1). In the case where p=1, we integrate (5.6),
interchange integrals, and obtain (5.1) again, using also (2.8).

Proof of (5.2). Write n:={1/t). Note that 1/(4¢) >n/4 so that

Pigf I(f—P) M;”L(l>|\|>ul(4,))< 1nf I(f = P)M;HL(I>|xl>u,,4)
€Y

r—1 7

In fact it suffices to estimate

inf (S = P) WL a1

PeZ,

as a similar estimate holds for the range [ —1, —a,,]; recall again from
[8, Lemma 3.1] that

nf (/=P Wl ra,,<ix<11
PeZ,

<2%4-3[ mf [(f—P) M}HLp[unM, 1] +Peil~}’,f,l [(f—P) W”Lp[fl, 711”/4]]'

Pe?
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Now if r=1, we can use Lemma 3.2 to deduce that (recall that p>1 and
that Lemma 3.2 did not require a Markov—Bernstein inequality)

1}2;) I(f—P) WHLP[aM, 1]
<) = flaya)) wx) | 1, 10

< CinT(a)1™ 21" Wlr a1
Lp[an4’ 1]

= || w(x) r f'(u) du

< C2n7] If'we, | Lylayy, 1]

Next, as in induction hypothesis, assume that for k=1, 2, ..., r — 1, we have

» if;f 108 =P) Wl £ ra,,11< Cin = | g P waf Iz a0 115 (5.7)
€%k

where C # C(g, n). (We have just proved this for k = 1.) Applying this with
k=r—1to g:=f', we can choose Se€ % _, such that

(/" =S) M}”Lp[a”M, ns Csn= "=V | fOwey ! ”Lp[un4, 17

Set
Py(x) = fldy) + jx S(u) du.
4
Then
0 =PIl <= PO Wl

<fww) [ (7= Sy

Lp[”n/4’ 1]

< CulnT(a,)]1 2 1(f = S) wlL a1
(by Lemma 3.2)
< Csn"T(a,) "2 [ fOwd; | L[a,4.1]
<Csn " || fTwey HLp[anA, 17-

So we have (5.7) for r and hence also (5.2). ||

In proving Corollary 1.6(b), we need
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LeEmMA 5.1. Let L>0, 0<p < oco. Suppose that P, e P, satisfies

1
H(g_Pn) WHLp[fl, 1] ngr,p <gs w, n>

Then

. ) 1
”P(n’)strUn ”Lp[—l, 11 Cn’wr,p <g, w, n>,

where C# C(g, n).
Proof. Choose P;f such that

[(g—P) W”Lp[—l, ptnr’ ”P:T(F)W(pq/n”Lp[—l, 1]
_ 1
<2I(r,p(g9 w, nir) < C2wr,p <ga w, n>’
Then
* 1
H(Pn_Pn)M)HL/][fl,l]SCfSwr,p g&w,— |.
n

From the Markov—Bernstein inequality (2.14), we deduce that
*)(r) r r 1
(P, —Py) W¢l/n”Lp[71,1]<C4n @, (8 W’Z .

Then
HPL”W@?/,, HL[,[fl, s Cs{ HP:,F(')W(p’i/n HLp[fl, 1]
+ (P, — P} derl/n ”L[,[fl, 1]}
, 1
<C6n O)r,p & M}’Z . I

Finally, we give the

Proof of Corollary 1.6(b). 1t is clear that

Kr,p(fa w, tr) 2 Kr,p(f) w, Zr)'

To prove the converse inequality, choose g such that

I(f—g) WHLP[—I, 17+ t ”g(r)wq§:|‘Lp[—l, 1] <2Kr,p(f’ w, t").

81
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Let n:=<1/t). By Corollary 1.4, we can choose P, € %, such that
1
H(g_Pn) M)‘|L[,[71,1]<C‘2a)r,p &, M}a; .

Then by the lemma above,

n=" |PPwd" | <C,w w !

n 1/n Lp[fl,I]\ 2% p &, ’I’l .

Then as @, ~ @, ,,, we obtain (using (1.17), (1.19))

_ _ 1
Kr, p(f’ w, [’) < C3 rnp <f’ w, ,.>
n

C3{ I(f—P,) WHLP[—I, 1] +n" ”P(nr)w¢q/n HLP[—I,l]}
C3{ I(f—g) M}HLp[fl, 11+ [(g—P,) W”Lp[fl, 1]
+n77 HPLV)WQSE/,,HLI)[A, 1]}

1
C4 {Kr,p(fy w, tr) + wr,p <g3 w, I’l>}

<
<

N

< Cs{Kr,p(f, w, t") +n"" Hg(r)w(pq/n HLp[fl, 1]}
< C6Kr, p(f’ w, tr)

by Corollary 1.6(a) and choice of g. ||
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